211 research outputs found

    Pulsed Electric Field: Fundamentals and Effects on the Structural and Techno-Functional Properties of Dairy and Plant Proteins

    Get PDF
    Dairy and plant-based proteins are widely utilized in various food applications. Several techniques have been employed to improve the techno-functional properties of these proteins. Among them, pulsed electric field (PEF) technology has recently attracted considerable attention as a green technology to enhance the functional properties of food proteins. In this review, we briefly explain the fundamentals of PEF devices, their components, and pulse generation and discuss the impacts of PEF treatment on the structure of dairy and plant proteins. In addition, we cover the PEF-induced changes in the techno-functional properties of proteins (including solubility, gelling, emulsifying, and foaming properties). In this work, we also discuss the main challenges and the possible future trends of PEF applications in the food proteins industry. PEF treatments at high strengths could change the structure of proteins. The PEF treatment conditions markedly affect the treatment results with respect to proteins’ structure and techno-functional properties. Moreover, increasing the electric field strength could enhance the emulsifying properties of proteins and protein-polysaccharide complexes. However, more research and academia-industry collaboration are recommended to build highly effective PEF devices with controlled processing conditions. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.Institute of Solid State Physics, University of Latvia as the Center of Excellence acknowledges funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART2

    Oxidative status and the response to pegylated-interferon alpha2A plus ribavirin in chronic genotype 4 HCV hepatitis

    Get PDF
    Oxidative stress may play a pathogenic role in chronic hepatitis C (CHC). The present study examined the oxidative status in plasma of patients with CHC who received pegylated interferon and ribavirin therapy. The following groups were included: (1) sustained virological response (28 patients), (2) null response (26 patients), (3) breakthrough (24 patients), (4) relapse (24 patients), (5) spontaneous cure (23 patients) and (6) twenty five normal subjects as a control group. Markers of oxidative stress including plasma malondialdehyde, nitric oxide, reduced glutathione, total antioxidant capacity and uric acid as well as serum ALT, AST, alkaline phosphatase, total bilirubin, albumin, prothrombin time were studied. The study indicated significant decline in reduced glutathione and total antioxidant capacity and markedly elevated levels of malondialdehyde and nitric oxide in all groups compared with the controls. Null response group had the highest levels of malondialdehyde and nitric oxide. Nitric oxide was significantly higher in those with null response compared with all other groups and with control subjects. Uric acid was significantly higher in spontaneous cure group compared with all other groups and with the controls. We concluded that CHC patients had increased oxidative stress. The oxidative status in plasma of these patients was not changed by antiviral therapy. The study also showed an important contribution of nitric oxide in null response patients. High serum uric acid did not interfere with the response and/or did not predict the response to antiviral therapy

    Out-of-Wedlock Pregnancy Among Single Mothers in Khartoum, Sudan: Sociodemographic Characteristics, Causes, and Consequences

    Get PDF
    Background: Out-of-wedlock childbearing is a global phenomenon that has lifelong consequences on the lives of both mothers and their children. The aim of this study is to identify the sociodemographic characteristics, causes, and consequences of outof- wedlock pregnancy among single mothers in Khartoum, Sudan.Methods: This descriptive, cross-sectional study was conducted at the Mygoma Orphanage Center (MOC) and Shamaa Rehabilitation Center (SRC) using convenience sampling among 200 participants. A validated questionnaire with 25 items was used to collect data. The data were entered into Epi-Data Manager and analyzed using the SPSS. Results: The study found that most of the single mothers in Khartoum who gave birth out of wedlock were young and had just completed their university education. Most of them discovered their pregnancy during the second or third trimester, and nearly half of them did not receive any antenatal care. The majority of the children born to these mothers were preterm and had a low birth weight. Additionally, many mothers reported experiencing social stigma and rejection from their families due to their out-of-wedlock pregnancy. The study also highlighted loneliness, stress, and romantic relations as the main causes of out-of-wedlock pregnancy among single mothers in Khartoum, Sudan.Conclusion: The study provides useful insights into the sociodemographic characteristics, causes, and consequences of out-of-wedlock pregnancy among single mothers in Khartoum, Sudan. Social stigma and lack of support were identified as significant barriers to the reintegration of single mothers and their children into society. Future research should focus on investigating the long-term effects of outof- wedlock pregnancy on mothers and their children

    Mitigation of acetaminophen-induced liver toxicity by the novel phosphatidylinositol 3-kinase inhibitor alpelisib

    Get PDF
    The sterile inflammatory response mediated by Toll-like receptors (TLRs) 4 and 9 is implicated in the massive hepatic damage caused by acetaminophen (APAP)-overdose. There is a crosstalk between TLR-dependent signaling with other intracellular kinases like phosphatidylinositol 3-kinases (PI3Ks). Nevertheless, the detailed role of PI3Kα is still unknown in hepatic sterile inflammation. Accordingly, the effect of the novel PI3Kα inhibitor alpelisib was investigated in the setting of APAP-driven sterile inflammation in the liver. This was examined by pretreating mice with alpelisib (5 and 10 mg/kg, oral) 2 h before APAP (500 mg/kg, i.p.)-intoxication. The results indicated that alpelisib dose-dependently lowered APAP-induced escalation in serum liver function biomarkers and hepatic necroinflammation score. Alpelisib also attenuated APAP-induced rise in cleaved caspase 3 and proliferating cell nuclear antigen (PCNA) in the liver hepatocytes, as indices for apoptosis and proliferation. Mechanistically, inhibition of PI3Kα by alpelisib limited APAP-induced overproduction of the pro-inflammatory tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6 in the blood circulation via switching off the activation of several signal transduction proteins, including extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), signal transducer and activator of transcription-3 (Stat-3), glycogen Synthase Kinase (GSK)-3β and nuclear factor (NF)-κB. Alpelisib also impaired APAP-instigated immune cell infiltration in the liver via reducing systemic granulocyte/macrophage-colony stimulating factor (GM-CSF) release and reversed APAP-induced abnormalities in the systemic and hepatic levels of the anti-inflammatory IL-10 and IL-22. In conclusion, selective modulation of the PI3Kα activity by alpelisib can hinder the inflammatory response and infiltration of immune cells occurring by APAP-hepatotoxicity

    Microplastic in the environment: identification, occurrencand mitigation measures

    Get PDF
    Microplastic is an emerging pollutant causing trouble worldwide due to its extensive distribution and potential hazards to the ecological system. Some fundamental questions about micro-plastics, such as their presence, source, and possible hazards, remain unanswered. These issues develop because of a lack of systematic and comprehensive microplastic analysis. As a result, we thoroughly evaluated current knowledge on microplastics, including detection, characterization, occurrence, source, and potential harm. Microplastics are found in seawater, soil, wetlands, and air matrices worldwide based on findings. Visual classification, which can be enhanced by com-bining it with additional tools, is one of the most used methods for identifying microplastics. As soon as is practicable, microplastics analytical methods ought to be standardized. New techniques for analyzing nano-plastics are urgently needed in the meantime. Numerous studies have shown that microplastics’ impacts on people and soil are significantly influenced by their size, shape, and surface physicochemical characteristics. Finally, this study suggests areas for future research based on the knowledge gaps in the area of microplastics. © 2022 Desalination Publications. All rights reserved
    corecore